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Abstract

The Russia-Ukraine war has transformed so-
cial media into a critical battleground for in-
formation warfare, making the detection of
manipulation techniques in online content an
urgent security concern. This work presents
our system developed for the UNLP 2025
Shared Tasks, which addresses both manipu-
lation technique classification and span identi-
fication in Ukrainian Telegram posts. In this
paper, we have explored several machine learn-
ing approaches (LR, SVC, GB, NB) , deep
learning architectures (CNN, LSTM, BiLSTM,
GRU hybrid) and state-of-the-art multilingual
transformers (mDeBERTa, InfoXLLM, mBERT,
XLM-RoBERTa). Our experiments showed
that fine-tuning transformer models for the spe-
cific tasks significantly improved their perfor-
mance, with XLM-RoBERTa large delivering
the best results by securing 3™ place in tech-
nique classification task with a Macro F1 score
of 0.4551 and 2™ place in span identification
task with a span F1 score of 0.6045. These
results demonstrate that large pre-trained multi-
lingual models effectively detect subtle manip-
ulation tactics in Slavic languages, advancing
the development of tools to combat online ma-
nipulation in political contexts.

1 Introduction

The war between Russia and Ukraine highlights
the critical importance of developing reliable mech-
anisms to identify misinformation on social me-
dia platforms. Among these platforms, Telegram
stands out as particularly significant, becoming a
breeding ground for channels that spread mislead-
ing information, Russian-favorable perspectives,
and complete falsehoods targeting Ukrainian users.
Contemporary Russian information warfare strate-
gies deliberately foster confusion, fracture public
consensus, undermine institutional credibility, and
construct distorted perceptions of reality (Paul and
Matthews, 2016). Al applications continue their

expansion across various fields, gaining particu-
lar traction in information literacy—specifically
addressing the detection and counteraction of disin-
formation phenomena that thrive within social me-
dia environments (Shu et al., 2020). The nuanced
variety of manipulation techniques employed, span-
ning from emotion-laden rhetoric to intricate logi-
cal fallacies, creates substantial obstacles for natu-
ral language processing (NLP) systems.

With the urgent need to counter online manipula-
tion, the Fourth Ukrainian NLP Workshop (UNLP
2025)! convened a shared task devoted to this very
issue. Drawing on a Ukrainian and Russian Tele-
gram corpus supplied by Texty.org.ua, participating
teams developed and evaluated Al approaches with
direct applications in both cybersecurity and dis-
information research. The competition was struc-
tured around two complementary objectives: first,
assigning each text to one of ten manipulation tech-
niques, and second, precisely marking the character
spans where manipulative tactics appeared.

Meeting these objectives requires models ca-
pable of detecting both overt cues and the more
nuanced, context-dependent signals of manipula-
tion. Although earlier work on propaganda and re-
lated detection tasks has laid important groundwork
(Da San Martino et al., 2019; Yoosuf and Yang,
2019; Firoj et al., 2022; Solopova et al., 2024), our
task’s focus on Ukrainian and Russian social media
and its insistence on joint span identification and
fine-grained technique classification offers a novel
contribution that pushes the frontier of disinforma-
tion analysis.

This paper presents our approach for the UNLP
2025 shared tasks. We test and evaluate several
methods, ranging from conventional machine learn-
ing techniques to advanced deep learning and trans-
former models. Our key contributions include:

1https://github.com/unlp—workshop/
unlp-2025-shared-task


https://github.com/unlp-workshop/unlp-2025-shared-task
https://github.com/unlp-workshop/unlp-2025-shared-task

* Developed transformer-based models to clas-
sify manipulation techniques and identify ma-
nipulative text spans in the dataset.

¢ Investigated thorough experiments with vari-
ous machine learning approaches, deep learn-
ing architectures, and pre-trained transformer-
based models, followed by extensive perfor-
mance analysis and error examination.

2 Related Works

Despite the growing importance of defending mes-
saging platforms against information-based attacks,
most security and disinformation research remains
concentrated on Twitter (Gilani et al., 2017) and
Reddit (Saeed et al., 2022), while encrypted and
semi-encrypted services such as Telegram, Signal,
and WhatsApp have seen far less scrutiny. In senti-
ment analysis, Aljedaani et al. (2022) proposed an
ensemble architecture that stacks LSTM and GRU
layers sequentially, achieving 0.97 accuracy and a
0.96 Macro F1 score on TextBlob-labeled airline
reviews. Similarly, Gandhi et al. (2021) compared
CNN and LSTM models—both using word2vec
embeddings—on the IMDB movie review dataset,
finding that the LSTM outperformed the CNN with
88.02% accuracy. Beyond sentiment tasks, In-
amdar et al. (2023) addressed mental-health de-
tection on Reddit by combining ELMo embed-
dings with logistic regression and SVM classi-
fiers, yielding a 0.76 Macro F1 score when iden-
tifying stress-related content. To tackle offen-
sive content in code-mixed text, Ravikiran and
Annamalai (2021) introduced the DOSA dataset
for Tamil-English span identification; multilin-
gual DistilBERT topped their benchmarks with a
0.405 Macro F1. In academic writing, Eguchi and
Kyle (2023) presented a Dual-RoBERTa model that
locates epistemic-stance spans, achieving a 0.7209
Macro F1. Finally, Papay et al. (2020) conducted a
broad evaluation of span-identification methods on
the CoNLL’00 chunking task, showing that their
hybrid BERT+Feat+LSTM+CRF model reaches a
micro-averaged F1 of 96.6%.

In war-related content analysis, Park et al. (2022)
examined subtle manipulation tactics in Russian
media coverage of the Ukraine war using their
VoynaSlov dataset. Their XLM-R frame clas-
sifier achieved 67.5% Macro-F1 on in-domain
MEFC data but dropped to 33.5% on VoynaSlov,
revealing challenges in real-world applications.
Solopova et al. (2023) compared a Transformer

(BERT) and an SVM with handcrafted features
for multilingual pro-Kremlin propaganda detection
on newspaper and Telegram corpora, achieving
F1 scores of 0.92 and 0.88 respectively; Bezli-
udnyi et al. (2023) trained a BERT-based classi-
fier on a custom Twitter and Telegram database to
distinguish pro-Ukrainian, pro-Russian, and neu-
tral texts, yielding 95% training and 83% test
accuracy as part of a real-time analytics tool.
Ustyianovych and Barbosa (2024) released the
TRWU Telegram news dataset and applied an XG-
Boost classifier for multi-task attitude, sentiment,
and discrimination detection, reaching an AUC of
0.9065; Burovova and Romanyshyn (2024) evalu-
ated transformer-based models for binary dehuman-
ization detection in Russian Telegram posts, with
SpERT achieving an F1 of 0.85. In related span
detection work, Thanh et al. (2021) created the UIT-
ViSD4SA dataset and developed a BILSTM-CRF
model with fused embeddings that reached 62.76%
Macro F1 score for Vietnamese sentiment analysis
spans. Despite these advances, none of these stud-
ies combine fine-grained manipulation technique
classification with precise span identification in
Ukrainian or Russian Telegram content—the exact
gap our UNLP 2025 shared task aims to address.

3 Task and Dataset Description

Participation in the UNLP 2025 Shared Task on De-
tecting Social Media Manipulation involved iden-
tifying manipulative techniques and manipulative
Spans within Ukrainian Telegram posts using a
dataset from Texty.org.ua (train.parquet, 3822 in-
stances; test.csv, 5,735 instances), with the original
training split further partitioned into 85 % training
(3,248) and 15 % validation (574) subsets for de-
velopment. Table 1 summarizes the data splits and
overall Dataset statistics.

Split Instances
Train 3,248
Validation 574
Test 5,735
Total Words 805,730
Unique Words 146,410

Table 1: Instance distribution across data splits and
dataset word counts.

The shared task comprised two subtasks: Sub-
task 1 (Technique Classification), a multi-label clas-
sification over ten predefined manipulation tech-



niques (e.g., Loaded Language, Whataboutism)
evaluated via Macro Fl-score; and Subtask 2
(Span Identification), which required pinpointing
character-level start/end indices of manipulative
text segments irrespective of technique and was
assessed using span-level Fl-score. The imple-
mentation details and datasets for both tasks are
available in the GitHub repository?.

4 Methodology

This section describes the methodologies employed
for the Technique Classification and Span Iden-
tification tasks. The research evaluated multiple
machine learning (ML), deep learning (DL), and
transformer-based approaches, with hyperparam-
eter optimization conducted to maximize perfor-
mance. The architectural frameworks utilized for
Technique Classification and Span Identification
tasks are illustrated in Figure 1 and Figure 2.
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Figure 1: Schematic process for Manipulation Tech-
nique Classification
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Figure 2: Schematic process for Manipulative Span
Identification

2https://github.com/borhanitr‘ash/
Detecting-Manipulation-in-Ukrainian-Telegram/

4.1 Data Preprocessing

A single, flexible pipeline processed the provided
datasets, which included 3,822 training and 5,735
test samples in Parquet and CSV formats. It begins
by splitting the original training set into 85% train-
ing and 15% validation subsets, stratified by manip-
ulation labels and seeded with 42 for reproducibil-
ity across both tasks. A uniform text-normalization
routine then replaced URLs with “[URL],” nor-
malized whitespace, imputed missing values, and
detected language (Ukrainian vs. Russian). From
that common foundation, task-specific steps fol-
lowed. In technique classification, missing entries
in the fechniques column were filled, its string rep-
resentations parsed into lists, and binary indica-
tors generated for each technique plus a global
manipulative flag, with targeted augmentation (e.g.,
word shuffling or deletion) applied to manipulative
examples. In span identification, character-level
trigger_words annotations were parsed into (start,
end) tuples and converted into token-level BIO tags,
with precise offset mapping used to align spans to
the model’s tokenizer.

4.2 Feature Extraction

Feature extraction was tailored to each architecture
and task objective. Traditional machine learning
models employed Scikit-learn’s® TF-IDF vectoriza-
tion to convert text into sparse matrices—unigrams
and bigrams (limited to 10,000 features) for tech-
nique classification, and trigrams (up to 20,000
features) for span identification. Deep learning ap-
proaches utilized BPEmb (Heinzerling and Strube,
2018) subword embeddings (50,000 vocabulary
size), with 300-dimensional vectors and sequences
of 512 tokens for technique classification, and
100-dimensional vectors with 384-token sequences
for span detection; embeddings were fine-tuned
in all but one CNN-based classifier, where they
remained frozen. Transformer-based systems re-
lied on model-specific tokenization via Hugging-
Face AutoTokenizers (padding or truncating to 512
or 384 tokens), with classification drawing on the
[CLS] token’s final hidden state through a linear
layer and span identification predicting BIO tag
logits from the final hidden states of every token.

4.3 Machine Learning Models

Several traditional machine learning methods were
applied to both Technique Classification and Span

Shttps://scikit-learn.org/stable/
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Identification tasks to establish robust baseline
performances. For the Technique Classification
task, cast as a multi-label text classification prob-
lem, models assessed including Complement Naive
Bayes (oo = 1.0 to mitigate class imbalance), Lin-
ear SVC (C = 1.0, max_iter=2000 for robust
convergence on sparse features), logistic regres-
sion (C' = 1.0, solver=saga, max_iter=1000
to balance speed and accuracy), random forest
(100 trees with ‘sqrt‘ feature splits for vari-
ance reduction) and gradient boosting (100 esti-
mators, learning_rate=0.1, max_depth=3 to pre-
vent overfitting). These classifiers were adapted
for multi-label classification using Scikit-learn’s
MultiOutputClassifier. In the Span Identifi-
cation task, framed as a word-level sequence la-
beling challenge under the BIO tagging scheme,
involved models such as Linear SVC (C' =
0.5, class_weight=balanced, max_iter=2000
to address token imbalance), logistic regression
(C = 1.0, solver=liblinear, multi_class=ovr
for efficient multiclass separation), multinomial
Naive Bayes (o« = 1.0 smoothing for robust
probability estimates) and LightGBM (300 trees,
learning_rate=0.1 for rapid gradient-based opti-
mization). Both tasks employed TF-IDF vectoriza-
tion techniques. The classification task extracted
unigrams and bigrams into a 10,000-dimensional
feature space to capture local collocations. The
span identification task focused on trigram contexts
(target token + one word) with up to 20,000 fea-
tures to encode immediate surroundings. Table 2
provides all model configurations and complete
hyperparameter settings.

4.4 Deep Learning Models

This proposed work also employed several deep
learning architectures to tackle the both Tech-
nique Classification and Span Identification tasks.
For Technique Classification, models performed
multi-label classification over 11 categories ( one
’manipulative’ label and ten manipulation tech-
niques). Each input sequence was represented by
300-dimensional BPEmb subword embeddings. A
baseline Convolutional Neural Network (CNN) fea-
tured three parallel Conv1D layers with kernel sizes
of 3, 4 and 5 with 64 filters each. Each convolution
used a ReLU activation. GlobalMaxPooling1D
aggregated features before a dropout layer (rate
0.3) and a dense output layer of 11 units with sig-
moid activations enabled multi-label prediction. To
capture both local patterns and longer-range de-

Classifier =~ Parameter Value
Technique Classification
CNB alpha 1.0
C 1.0
SvC max_iter 2000
C 1.0
LR solver saga
max_iter 1000
n_estimators 100
RF max_depth None
min_samples_split 2
n_estimators 100
GB learning_rate 0.1
max_depth 3
Span Identification
C 0.5
SVC€ max_iter 2000
C 1.0
LR solver liblinear
max_iter 500
MNB alpha 1.0
n_estimators 300
LightGBM learning_rate 0.1
num_leaves 31

Table 2: Hyperparameters used for Technique Classifi-
cation and Span Identification tasks.

pendencies, hybrid CNN-RNN architectures were
developed. The CNN frontend resembled the base-
line but used 100 filters per kernel size and max-
pooling. Its pooled outputs concatenated into a
fixed-size feature vector. That vector merged with
the final hidden state(s) of a stacked recurrent path-
way. Three RNN variants were tested: two LSTM
layers, two Bidirectional LSTM (BiLSTM) layers,
and two GRU layers. Each recurrent layer had
a hidden dimension of 256 (resulting in an effec-
tive 512 for BILSTM). A dropout rate of 0.2 was
applied between recurrent layers. After concate-
nation, a further dropout of 0.4 preceded the final
11-unit sigmoid layer. All classification models
trained with Binary Cross-Entropy loss and class
weights to address imbalance. The AdamW opti-
mizer guided training, and gradient clipping (max
norm 1.0) ensured stable updates.

The Span Identification task framed sequence la-
beling under the BIO scheme. Input texts used 100-
dimensional BPEmb embeddings over a 50,000-
token vocabulary that were fine-tuned during train-
ing. Sequences of up to 384 subwords were ob-
tained by padding or truncation. A shared CNN
feature extractor served as the frontend for all span
models. It began with dropout at rate 0.25 then ap-
plied three parallel 1D convolutional layers (kernel
sizes 3, 5, 7; 128 filters each) with ReLLU activa-
tions and same padding to preserve length. The con-
volutional outputs concatenated and passed through



another dropout of 0.25. From that point, different
architectures produced final BIO tags per subword.
A pure CNN model applied a linear layer directly
to the CNN outputs. Hybrid variants appended a
single recurrent layer: unidirectional LSTM with
256 units, BILSTM with 128 units per direction,
or BiGRU with 128 units per direction. Sequence
packing optimized the bidirectional models. The
output sequence from the RNN (or the CNN fron-
tend) underwent a final dropout of 0.25 before a
linear layer predicted three BIO tags at each po-
sition. All span identification models used the
AdamW optimizer with Cross-Entropy loss and
class weights to counter label imbalance and clip-
ping gradients at a norm of 1.0 helped keep training
stable. A ReduceLROnPlateau scheduler watched
the validation Span F1 score and lowered the learn-
ing rate when it stopped improving. Table 3 pro-
vides all hyperparameters for CNN, CNN+LSTM,
CNN+BiLSTM, CNN+GRU, and CNN+BiGRU
models used in technique classification and span
identification.

Model RNN Layers LR Epochs BS
Technique Classification

CNN - 3e-4 50 o4

CNN+LSTM 2xLSTM(256) 1.2e-4 39 32

CNN+BiLSTM 2xBiLSTM(256) 2.0e-4 28 32

CNN+GRU 2xGRU(256) 2.5e-4 25 32
Span Identification

CNN — [.0e-4 20 32

CNN+LSTM IXLSTM(256) 2.0e-4 20 32

CNN+BiLSTM 1xBiLSTM(128) 1.5e-4 20 32
CNN+BiGRU  1xBiGRU(128) 1.8e-4 20 32

Table 3: Hyperparameters of deep learning models for
both Technique Classification and Span Identification,
where LR and BS denote as learning rate and batch
size).

4.5 Transformer-Based Models

Our approach to both the Technique Classification
and Span Identification tasks rely on pre-trained
multilingual Transformer models. These deep ar-
chitectures use self-attention to relate every token
to all others in a sequence. Such connections en-
able the capture of long-range and subtle contex-
tual cues (Vaswani et al., 2017). This ability proves
valuable for many natural language challenges. In
this case both classification and sequence label-
ing require attention to fine details in text. A
curated set of powerful multilingual models was
selected from the Hugging Face Transformers li-
brary*. Each model underwent fine-tuning to adapt

*https://huggingface.co/transformers

its learned representations to the nuances of pro-
paganda technique detection and span identifica-
tion. Multilingual pre-training ensures robust per-
formance across languages with varying resource
levels. This feature is crucial for the Ukrainian and
Russian data in this shared task.

The core models evaluated for both tasks in-
cluded mDeBERTa v3 base (He et al., 2021), In-
foXLM large (Chi et al., 2021), XLM-RoBERTa
large (Conneau et al., 2019) and BERT base multi-
lingual cased (Devlin et al., 2018). For Technique
Classification, to assess a language-specific yet rel-
atively compact encoder, the Ukr-Roberta-Base
model (Radchenko, 2020) was evaluated. This
model, pre-trained extensively on a large corpus of
Ukrainian texts including Wikipedia, OSCAR, and
social media data, offers specialized understand-
ing for the primary language of the dataset. For
Span Identification the mT5 base model (Xue et al.,
2020) was adapted from a sequence-to-sequence
design. Each architecture offers a unique blend
of training objectives and structure. mDeBERTa
employs disentangled attention to refine token in-
teractions. InfoXLM integrates a cross-lingual
alignment objective to bridge languages. XLM-
RoBERTa extends RoBERTa’s robust pre-training
to cover over 100 languages. mBERT provides
broad multilingual coverage even without explicit
alignment objectives. mT5 frames text as a gener-
ation task which can aid in decoding spans. This
diversity in design helps model adaptation to varied
data distributions.

Fine-tuning for the classification task began by
attaching a specialized output head to each Trans-
former encoder. This head included one or more lin-
ear layers with GELU activation and multi-sample
dropout in five parallel samples at a rate of 0.3.
A consistent text preprocessing pipeline was ap-
plied. First, URLs were removed and extra whites-
pace collapsed. Then SentencePiece tokenization
encoded the text. All sequences were padded or
truncated to a maximum length of 512 tokens. To
increase robustness, random word deletion at a rate
of 0.3 was applied during training. Class imbalance
posed a significant challenge. This was addressed
using Focal Loss (Lin et al., 2017) with a gamma
value of 2.0 in all setups except XLM-RoBERTa-
large in which Binary Cross Entropy with inverse
frequency class weights was used and it was capped
at ten ensured stable gradients. Label smoothing at
0.05 reduced overconfidence. After training, opti-
mal thresholds for each technique were tuned based
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on macro F1 performance on a validation split.

Token-level span identification treated each to-
ken as an individual prediction. A token classifi-
cation head was added on top of the Transformer
encoder output. Most models used a three-label
BIO scheme to mark span beginnings, span con-
tinuations and non-span tokens. The InfoXLM
large setup was first tested with a simpler two-class
approach. The sparse distribution of span labels
required loss functions that focus on harder exam-
ples. Both Weighted Cross Entropy and variants
of Focal Loss were evaluated. Weighted Cross
Entropy was used by InfoXLM-Large and Focal
Loss was used by all other models. Dropout rates
within Transformer layers were increased to 0.2
for hidden modules and attention modules in In-
foXLM. An optional Conditional Random Field
(Lafferty et al., 2001) layer was evaluated with
mDeBERTa to enforce valid tag transitions. For
XLM-RoBERTa, Layerwise Learning Rate Decay
(Howard and Ruder, 2018) applied smaller rates
at deeper layers than at the top. Post-processing
merged predicted spans within a small character
distance threshold to reduce fragmentation.

All experiments used the AdamW optimizer. A
cosine scheduling approach adjusted the learning
rate while a linear warmup phase consumed ten
percent of the total steps. Learning rates ranged
from 1 x 107° to 2 x 10~°. Gradient accumulation
allowed large effective batch sizes despite GPU
memory limits. Many runs used four accumulation
steps to reach an effective batch size of thirty-two.
Training proceeded with varying epochs for dif-
ferent models. Detailed hyperparameters such as
batch sizes, andweight decay values appear in Ta-
ble 4. This uniform setup ensured reproducibility
and fair comparison across models. It also provided
clear insight into which pre-training objectives and
fine-tuning strategies work best for multilingual
propaganda detection and span identification.

5 Result Analysis

This analysis covers three model families, machine
learning, deep learning and transformer based sys-
tems on both technique classification and span
identification tasks using Ukrainian and Russian
Telegram content. Performance was measured by
macro precision, recall and F1 score as shown in
Table 5.

Machine learning baselines defined the starting
point. For technique classification Logistic Regres-

Model LR WD BS GA EP
Technique Classification

mDeBERTa-B le-5 0.01 8 1 10
InfoXLM-L 1.2e-5 0.01 8 1 10
XLM-R-L 1.8e-5 0.01 8 4 8
mBERT-base 1.5e-5 0.01 16 1 8
Ukr-Roberta-B 2e-5 0.01 32 1 10
Span Identification
InfoXLM-L 1.2e-5 0.01 8 1 5
mDeBERTa-B 2e-5 0.01 4 4 5
XLM-R-L 2e-5 0.01 2 4 8
mBERT-base 2.2e-5 0.01 4 4 5
mT5-B 1.5e-5 0.01 4 4 5

Table 4: Hyperparameters used for Technique Classi-
fication and Span Identification, where LR: Learning
Rate, WD: Weight Decay, BS: Batch Size, GA: Gradi-
ent Accumulation, EP: Epochs.

Classifier Precision Recall F1 Score
Technique Classification
ML Models
LinearSVC 0.3543 0.2878 0.3102
CNB 0.2680 0.2818 0.2553
LR 0.2807 0.5433 0.3291
RF 0.5688 0.1060 0.1309
GB 0.3926 0.1423 0.1846
DL Models
CNN 0.2991 0.3287 0.2816
CNN+LSTM 0.3125 0.3388 0.3077
CNN+BiLSTM 0.3403 0.3443 0.3252
CNN+GRU 0.3649 0.3087 0.3179
Transformers
mDeBERTa V3 Base 0.3453 0.5055 0.3901
InfoXLM Large 0.3855 0.5477 0.4451
XLM-RoBERTa-large 0.3917 0.5667 0.4498
BERT multilingual base 0.3710 0.3930 0.3772
Ukr-Roberta-Base 0.3687 0.4366 0.3660
Span Identification
ML Models
LinearSVC 0.4020 0.3921 0.3970
LR 0.4169 0.3578 0.3851
MNB 0.4169 0.3578 0.3851
lightGBM 0.3599 0.4794 0.4112
DL Models
CNN 0.2596 0.8715 0.4001
CNN+LSTM 0.2566 0.9187 0.4012
CNN+BIiLSTM 0.2878 0.8126 0.4251
CNN+BiGRU 0.2949 0.8023 0.4313
Transformers
infoXLM-large 0.5646 0.5510 0.5577
mDeBERTa-v3-base 0.6367 0.4644 0.5371
XLM-RoBERTa-large 0.5616 0.6500  0.6026
BERT-base-multilingual 0.5188 0.5697 0.5431
mt5-base 0.3930 0.6645 0.4939

Table 5: Performance Comparison of ML, DL, and
Transformer Models for both tasks

sion achieved the highest F1 of 0.3291, driven by
strong recall of 0.5433 but lower precision. Ran-
dom Forest reached precision of 0.5688 yet suf-
fered recall of 0.1060, yielding an F1 of 0.1309.
In span identification lightGBM led ML methods
with an F1 of 0.4111 thanks to recall of 0.4794 and



moderate precision. Logistic Regression and Multi-
nomial Naive Bayes tied at F1 0.3851, trading re-
call for higher precision. These classic approaches
struggled to balance both metrics on complex mul-
tilingual data.

Deep learning variants showed mixed strengths.
In technique classification the CNN+BiLSTM
model reached an F1 of 0.3252 by processing con-
text in both directions. Other CNN with GRU or
LSTM followed, all outperforming the standalone
CNN at F1 0.2816. On span identification mod-
els such as CNN+BiGRU scored an F1 of 0.4313
but combined recall above 0.80 with precision be-
low 0.30. This suggests strong token detection yet
imprecise boundary placement.

Transformer based systems outperformed both
other groups. XLLM RoBERTa Large achieved F1
of 0.4498 for technique classification (precision
0.3917, recall 0.5667) and F1 of 0.6026 for span
identification (precision 0.5616, recall 0.6500). In-
foXLM Large followed closely (classification F1
0.4451; span identification F1 0.5577). Models like
mDeBERTa v3 base and multilingual BERT also
surpassed ML and DL methods. Their pretrained
multilingual embeddings and deep attention mech-
anisms enable a nuanced grasp of subtle cues.

Overall transformer pretrained models deliver
the most reliable performance for detecting propa-
ganda techniques and marking their exact spans in
bilingual social media text. Their ability to learn
rich contextual patterns clearly outstrips earlier
paradigms.

6 Error Analysis

Quantitative and qualitative error analyses of the
technique classification and span identification
tasks employed confusion matrices and focused ex-
amination of example predictions to reveal model
strengths and limitations.

6.1 Quantitative Analysis

The confusion matrix for technique classifica-
tion shown in Figure 3 reveals clear strengths
and weaknesses. The model excelled at com-
mon tactics. Loaded_language was identified
correctly 2 079 times. Cherry_picking (619),
glittering_generalities (516) and fud (410) also
scored well. Rare or subtle techniques proved
tougher. Straw_man (83), bandwagon (67) and
whataboutism (101) each had low diagonal counts.
Off-diagonal entries highlight both misclassifi-

cations and genuine multi-technique usage, a
known challenge when applying standard confu-
sion matrices to multi-label tasks for which spe-
cialized approaches have been developed (Heydar-
ian et al., 2022). For example loaded_language
co-occurred with fud (840), appeal_to_fear (743),
cherry_picking (736) and cliche (620). The 275 in-
stances where fud co-occurred with appeal_to_fear
reflect their conceptual link. Such overlaps sug-
gest the model struggles when persuasive strategies
share emotional or thematic features.

Confusion Matrix for Multi-label Classification

Figure 3: Confusion matrix of the proposed model (fine-
tuned XLM-RoBERTa large) for technique classifica-
tion
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Figure 4: Confusion matrix of the proposed model (fine-
tuned XLM-RoBERTa large) for span identification

At the token level, span identification shows
similar patterns shown in Figure 4. True neg-
atives (2,145,940) far outnumber false positives
(416,598) and false negatives (287,237). True posi-
tives reached 533,697. The high false positive rate
indicates a tendency to over-predict span bound-
aries. The model often tags neutral words next to



manipulative text as part of the span. This behav-
ior lowers token-level precision more than recall
and drags down the span-level F1 score. The root
cause appears to be the blurred line between neutral
phrasing and subtle manipulation.

6.2 Qualitative Analysis

Examination of specific cases shown in Figure 5
sheds light on these quantitative trends. In classifi-
cation tasks the main technique is usually correct
but extra labels slip in. For instance a post marked
appeal_to_fear and loaded_language might also
pick up fud in prediction. This mirrors the confu-
sion seen in off-diagonal counts. Sometimes three
techniques blur into one another when the text uses
layered emotional appeals.

Content Actual Label Predicted Label

ConoB#0B, CTEPBATHAK NPOMAraHH | Loaded Language | Loaded Language
PexoHcTpyKitist mpasH | Biramiit [TopTHHKOB

https://youtu.be/kB4Kq3yqiXY

Appeal_to_fear,
loaded_language

Appeal_to_fear, fud,
loaded_language

B UepHOBIIAX YKPOKHBOTHEIE -MOTHIH3aTOPEI
OXHTHITH BENOCHIISIHCTA

OYepeHOI JOGPOBOTIEN Yexall Ha (POHT. ..

Fud, Whataboutism,
Loaded_language,
cherry_picking

JlermyTate! Pajel, KakeTcs, caMy MalnocTb 6e3 Loaded_language,
HHTepeca CIYIIAT [IepBoe BBICTYILICHHe HOBOro | cherry picking
MHUHHCTPa 0GODOHB

Figure 5: Few examples of predictions produced by
the proposed XLM-R Large model on the technique
classification task

Content Actual Span

[(0, 101)]

Predicted Span

FOsepueiiM. Eciu Tl pajtyeInbes 10Kapy Ha [(1.4), (10, 101)]

it 'POC - THI pacuen

Hogouec
37EKTPHIECTRO.
Tlommmn!

Pycckas BecHa IIaBHO Mepeiinét B pycckoe neto | [(0, 74), (76, 100)] | [(0. 101)]
1 Bech JIoHGace BepHETCA OMOIL. DTOTO MbI
JKIEM Beelt mymroii.

CrioziBaroch yci 3po3yMil XTO Taka PycH, a TO [(0, 103)]
JIO I1BOTO Yacy I3paiilh HAMAraBcs Ha JBOX

CTITBIX BCHITH.

[(0. 103)]

[0.31]

ComnoBiTOB, CTEPBATHIIK MPOMATAH/II |
PekoHcTpyKuis pasu | Bitaniii ITopTHIKOB

[0, 31)]

Figure 6: Few examples of predictions produced by the
proposed XLLM-R Large model on the span identifica-
tion task

In span identification, boundary errors are the
most prevalent as shown in Figure 6. A manip-
ulative segment may be predicted to start one to-
ken too late or end early. In other cases two dis-
tinct ground-truth spans merge into one predicted
span and skip a short neutral segment. For ex-
ample, the model may fragment what should be
a single manipulative span [(0,101)] into smaller
segments [(1,4), (10,101)], thereby omitting impor-
tant introductory cues. In another case, two distinct

spans [(0,74) and (76,100)] are merged into one
[(0,101)], inadvertently swallowing a neutral seg-
ment. Yet when manipulative language is sharply
defined—say a direct threat or an unmistakable
claim—the model nails both start and end points
perfectly.

These findings point to key areas for future work:
sharpening distinctions among similar techniques
and tightening span boundaries. Targeted refine-
ments in feature representation and boundary detec-
tion could raise both precision and recall without
sacrificing one for the other.

7 Conclusion

This paper introduces a system developed for
the UNLP 2025 shared tasks on manipulation
technique classification and manipulative span
identification in Ukrainian and Russian Telegram
posts, and demonstrates its effectiveness through
extensive experiments comparing traditional ma-
chine learning methods, deep learning architec-
tures, and transformer-based models. Among these,
XLM-RoBERTa-large achieved the strongest per-
formance, with a macro-averaged F1 of 0.4498
in technique classification and a span-level F1 of
0.6026 in span identification. Detailed error anal-
ysis revealed two key challenges: distinguishing
between semantically similar manipulation tactics,
particularly loaded language versus appeal to fear
and precisely delineating span boundaries in mor-
phologically complex Slavic texts. These findings
emphasize contextual modeling and cross-lingual
pretraining for detecting persuasive cues in Slavic
texts. Future works involve boundary-aware span
detection, contrastive learning, architectures for
low-resource conflict zones, and synthetic data aug-
mentation against evolving encrypted-channel tac-
tics.

Limitations

Although the transformer model delivered strong
performance it faces several limitations. (i) The
dataset remains imbalanced with few instances
of whataboutism and straw man which reduces
detection reliability. (ii) The model struggles to
identify span boundaries in morphologically com-
plex Slavic languages resulting in overextended or
merged manipulative segments. (iii) Techniques
with similar emotional or rhetorical characteristics
such as loaded language fear appeal and FUD are
frequently misclassified. (iv) Validation has been



confined to Telegram data so performance on other
social media platforms and emerging propaganda
methods remains unexamined. Addressing these
limitations presents key opportunities for enhanc-
ing multilingual manipulation detection.
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A Frequency of Manipulation Techniques
Across Data Splits

Techniques Distribution in Training Set
Sample size: 3248

Techniques

mm Loaded Language: 39.0% (1685)
= Cherry Picking: 10.3% (444)
mm Glittering Generalities: 9.7% (418)
= Euphoria: 9.3% (401)
= Cliche: 9.2% (397)
- FUD: 7.5% (326)
m Appeal to Fear: 6.0% (258)
= Whataboutism: 3.2% (137)

Bandwagon: 3.0% (129)
mm Straw Man: 2.8% (123)

Figure 7: Manipulation techniques distribution in train-
ing set

Techniques Distribution in Validation Set
Sample size: 574

Techniques
W Loaded Language: 40.4% (288)
s Cherry Picking: 9.5% (68)
m Cliche: 9.3% (66)
= Glittering Generalities: 9.1% (65)
mmm Euphoria: 8.6% (61)
- FUD: 8.3% (59)
s Appeal to Fear: 5.9% (42)
=== Bandwagon: 3.9% (28)
Whataboutism: 2.9% (21)
= Straw Man: 2.1% (15)

Figure 8: Manipulation techniques distribution in vali-
dation set
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B Number of Techniques per Post Across
Data Splits

Number of Techniques per Post in Training Set
Sample size: 3248

1000

800

600 -

Number of Posts

400 4

200

0 1 2 3 4+
Number of Techniques Applied

Figure 10: Number of techniques per post in training

set
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Figure 11: Number of techniques per post in validation
set
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